Unified Locally Linear Embedding and Linear Discriminant Analysis Algorithm (ULLELDA) for Face Recognition
نویسندگان
چکیده
Manifold learning approaches such as locally linear embedding algorithm (LLE) and isometric mapping (Isomap) algorithm are aimed to discover the intrinsical low dimensional variables from high-dimensional nonlinear data. While, in order to achieve effective recognition tasks based on manifold learning, many problems remain to be solved. In this paper, we propose unified algorithm based on LLE and linear discriminant analysis (ULLELDA) for those remained problems. First, training samples are mapped into low-dimensional embedding space and then LDA algorithm is used to project samples into discriminant space for enlarging between-class distances and decreasing within-class distance. Second, the unknown samples are directly mapped into discriminant space without the computation of the corresponding one in the low-dimensional embedding space. Experiments on several face databases show the advantages of the proposed algorithm.
منابع مشابه
Ensemble-Based Discriminant Manifold Learning for Face Recognition
The locally linear embedding (LLE) algorithm can be used to discover a low-dimensional subspace from face manifolds. However, it does not mean that a good accuracy can be obtained when classifiers work under the subspace. Based on the proposed ULLELDA (Unified LLE and linear discriminant analysis) algorithm, an ensemble version of the ULLELDA (En-ULLELDA) is proposed by perturbing the neighbor ...
متن کاملLocally Linear Embedded Eigenspace Analysis
The existing nonlinear local methods for dimensionality reduction yield impressive results in data embedding and manifold visualization. However, they also open up the problem of how to define a unified projection from new data to the embedded subspace constructed by the training samples. Thinking globally and fitting locally, we present a new linear embedding approach, called Locally Embedded ...
متن کاملCross-view Graph Embedding
Recently, more and more approaches are emerging to solve the cross-view matching problem where reference samples and query samples are from different views. In this paper, inspired by Graph Embedding, we propose a unified framework for these cross-view methods called Cross-view Graph Embedding. The proposed framework can not only reformulate most traditional cross-view methods (e.g., CCA, PLS a...
متن کاملFacial expression recognition using local binary patterns and discriminant kernel locally linear embedding
Given the nonlinear manifold structure of facial images, a new kernel-based supervised manifold learning algorithm based on locally linear embedding (LLE), called discriminant kernel locally linear embedding (DKLLE), is proposed for facial expression recognition. The proposed DKLLE aims to nonlinearly extract the discriminant information by maximizing the interclass scatter while minimizing the...
متن کاملSupervised Feature Extraction of Face Images for Improvement of Recognition Accuracy
Dimensionality reduction methods transform or select a low dimensional feature space to efficiently represent the original high dimensional feature space of data. Feature reduction techniques are an important step in many pattern recognition problems in different fields especially in analyzing of high dimensional data. Hyperspectral images are acquired by remote sensors and human face images ar...
متن کامل